自拍偷拍一二三四区|麻豆传媒在线看刘思慧|麻豆91在线精品|国产69精品麻豆久久|网站你懂得|国产精品露脸自拍一区|免费黑料爆料网|亚洲av综合色|91福利专区|爱豆传媒5220,网红主播直播视频,高级毛片,香蕉视频官网官网

徐葉松

徐葉松,男,碩導,。20223月畢業(yè)于南京理工大學計算機科學與工程學院,并獲計算機科學與技術(shù)專業(yè)工學博士學位,。20224月入職于安徽工程大學計算機與信息學院。主要研究方向為機器學習,、模式識別和計算機視覺,。

 

主持的項目:

1. 面向大規(guī)模復雜數(shù)據(jù)的子空間聚類算法研究,國家自然科學基金青年項目,。2024.01-2026.12.

2. 針對大規(guī)模數(shù)據(jù)的多視圖聚類算法研究,,安徽省教育廳高校科學研究重點項目,。2023.09-2025.08.

 

第一作者發(fā)表的論文:

1. Auto-Encoder-Based Latent Block Diagonal Representation for Subspace Clustering, IEEE Transactions on Cybernetics, 2020. (SCI一區(qū),,TOP)

2. Learnable Low-Rank Latent Dictionary for Subspace ClusteringPattern Recognition, 2021. (SCI一區(qū),,TOP)

3. Linearity-Aware Subspace Clustering, AAAIOral, 2022. (CCF-A會議,,人工智能領(lǐng)域頂會)

4. Fast SubspaceClustering by Learning Projective Block Diagonal RepresentationPattern Recognition, 2023. (SCI一區(qū),,TOP)

5. Sparseness and Correntropy-Based Block Diagonal Representation for Robust Subspace Clustering, IEEE Signal Processing Letters, 2024. (SCI二區(qū), CCF-C)

6. Asymptotics-Aware Multi-View Subspace Clustering, IEEE Transactions on Multimedia, 2025. (SCI一區(qū),,TOP)

7. Metric Learning-Based Subspace Clustering, IEEE Transactions on Neural Networks and Learning Systems, 2025. (SCI一區(qū),TOP)

 

聯(lián)系方式,郵箱:[email protected]